1、当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差,即a^2-b^2=(a+b)(a-b)
2、a^2-b^2
3、当除式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。
4、平方差是指两个数的平方之差,可以用平方差公式来表示。平方差公式是指两个数之和与这两个数之差的积,并且积等于这两个数的平方差。公式中字母可以代表具体的数字、字母、单项式或多项式等代数式。平方差公式的特征是公式左边为两个数的和乘以这两个数的差,在这两个二项式中有一项完全相同,另一项互为相反数;公式右边为这两个数的平方差,即右边是完全相同的项的平方减去符号相反项的平方
5、平方差公式(formulaforthedifferenceofsquare)是指两个数的和与这两个数差的积,等于这两个数的平方差。公式中字母的不仅可代表具体的数字、字母、单项式或多项式等代数式。在三角函数公式中,有一组公式被称为三角平方差公式。由于酷似平方差公式而得名,主要用于解三角形。
6、方差:是反映一组数据离散程度(稳定程度或者波动程度)的统计量;设一组数据x1,x2,x3……xn中,各组数据与它们的平均数x(拔)如数据2,3,4,4,7,平均数为4,如果另一组对比数据的方差等于1.3,则第二组数据较前一组数稳定
7、两数的和与这两数的差的积,就是它们的平方差。
8、在三角函数公式中,有一组公式被称为三角平方差公式。由于酷似平方差公式而得名,主要用于解三角形。
9、方差:是反映一组数据离散程度(稳定程度或者波动程度)的统计量;设一组数据x1,x2,x3……xn中,各组数据与它们的平均数x(拔)如数据2,3,4,4,7,平均数为4,如果另一组对比数据的方差等于1.3,则第二组数据较前一组数稳定;
10、这个公式表明,两个数的平方之差等于这两个数的和乘以它们的差。这个公式在数学中有广泛的应用,包括在代数、几何和三角学等领域。
11、平方差公式是一种基本的数学公式,它描述了两个平方数之差可以如何简化。平方差公式通常只有一种,即:
12、a²-b²=(a+b)(a-b)
13、=(a^2-ab)+(ab-b^2)
14、标准差:也是一个统计量,和方差一样反映一组数据离散程度(稳定程度或者波动程度)标准差=方差的算术平方根,如一组数据的方差为4,则标准差就是2
15、平方差指一个平方数或正方形,减去另一个平方数或正方形得来的乘法公式:a²-b²=(a+b)(a-b)两个数a和b的平方之差,就是他们的平方差
16、=a(a-b)+b(a-b)
17、两个数的平方之差
18、希望这个回答对你有所帮助!如果你还有其他问题,欢迎随时提问。
19、平方差就是两个数的平方之差;如:a²-b²,就成为a和b的平方差;
20、平方差:两个数的平方之差;如:a²-b²,就成为a和b的平方差;
21、平方差是指两个数的平方之差,可以用平方差公式来表示。平方差公式是指两个数之和与这两个数之差的积,并且积等于这两个数的平方差
22、=(a+b)(a-b)
23、是指两个数的和与这两个数差的积,等于这两个数的平方差。公式中字母的不仅可代表具体的数字、字母、单项式或多项式等代数式。
24、=a^2-b^2+(ab-ab)
25、平方差是指两个数的平方之差,可以用平方差公式来表示。平方差公式是指两个数之和与这两个数之差的积,并且积等于这两个数的平方差。公式中字母可以代表具体的数字、字母、单项式或多项式等代数式。平方差公式的特征是公式左边为两个数的和乘以这两个数的差,在这两个二项式中有一项完全相同,另一项互为相反数;公式右边为这两个数的平方差,即右边是完全相同的项的平方减去符号相反项的平方1。
26、[逆推导平方差公式]
27、而它们的积等于乘式中这两个数的平方差,即(a+b)(a-b)=a²-b²,两数的和与这两数的差的积,就是它们的平方差。